JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Active transport of CO(2) and bicarbonate is induced in response to external CO(2) concentration in the green alga Chlorella kessleri.

The time-course of induction of CO(2) and HCO(3)- transport has been investigated during the acclimation of high CO(2)-grown Chlorella kessleri cells to dissolved inorganic carbon (DIC)-limited conditions. The rate of photosynthesis of the cells in excess of the uncatalysed supply rate of CO(2) from HCO(3)- was taken as an indicator of HCO(3)- transport, while a stimulation of photosynthesis on the addition of bovine carbonic anhydrase was used as an indicator of CO(2) transport. The maximum rate of photosynthesis (Pmax) was similar for high CO(2)-grown and low CO(2)-grown cells, but the apparent whole cell affinity for DIC and CO(2) of high CO(2)-grown cells was found to be about 30-fold greater than in air-grown cells, which indicates a lower affinity for DIC and CO(2). It was found that HCO(3)- and CO(2) transport were induced in 5.5 h in cells acclimating to air in the light and in the presence and absence of 21% O(2), which indicates that a change in the CO(2)/O(2) ratio in the acclimating medium does not trigger induction of DIC transport. No active DIC transport was detected in high CO(2)-grown cells maintained on high CO(2) for 5.5 h in the presence of 5 mM aminooxyacetate, an aminotransferase inhibitor. These results indicate no involvement of photorespiration in triggering induction. Active DIC transport induction was inhibited in cells treated with 5 microgram ml(-1) cycloheximide, but was unaffected by chloramphenicol treatment, indicating that the induction process requires de novo cytoplasmic protein synthesis. The total DIC concentration eliciting the induction and repression of CO(2) and HCO(3)- transport was higher at pH 7.5 than at pH 6.6. The concentrations of external CO(2) required for the induction and repression of DIC transport were 0 and 120 microM, respectively, and was independent of the pH of the acclimation medium. Prolonged exposure to a critical external CO(2) concentration elicits the induction of DIC transport in C. kessleri.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app