JOURNAL ARTICLE

Fibroblastic stromal cells express receptor activator of NF-kappa B ligand and support osteoclast differentiation

J M Quinn, N J Horwood, J Elliott, M T Gillespie, T J Martin
Journal of Bone and Mineral Research 2000, 15 (8): 1459-66
10934644
Osteoclast formation in bone is supported by osteoblasts expressing receptor activator of NF-kappa B ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) expression. Numerous osteotropic factors regulate expression levels of RANKL and the RANKL decoy receptor osteoprotegerin (OPG) in osteoblasts, thereby affecting osteoclast differentiation. However, not only in RANKL widely expressed in soft tissues, but osteoclasts have been noted in extraskeletal lesions. We found that cultured skin fibroblastic cells express RANKL, M-CSF, and OPG messenger (mRNA). Stimulation by 1 alpha,25 dihydroxyvitamin D3 [1,25(OH)2D3] plus dexamethasone (Dex) augmented RANKL and diminished OPG mRNA expression in fibroblastic cells and caused the formation of numerous osteoclasts in cocultures of skin fibroblastic cells with hemopoietic cells or monocytes. The osteoclasts thus formed expressed tartrate-resistant acid phosphatase (TRAP) and calcitonin (CT) receptors and formed resorption pits in cortical bone. Osteoclast formation also was stimulated (in the presence of Dex) by prostaglandin E2 (PGE2), interleukin-11 (IL-11), IL-1, tumor necrosis factor-alpha (TNF-alpha), and parathyroid hormone-related protein (PTHrP), factors which also stimulate osteoclast formation supported by osteoblasts. In addition, granulocyte-macrophage-CSF (GM-CSF), transforming growth factor-beta (TGF-beta), and OPG inhibited osteoclast formation in skin fibroblastic cell-hemopoietic cell cocultures; CT reduced only osteoclast nuclearity. Fibroblastic stromal cells from other tissues (lung, respiratory diaphragm, spleen, and tumor) also supported osteoclast formation. Thus, RANKL-positive fibroblastic cells in extraskeletal tissues can support osteoclastogenesis if osteolytic factors and osteoclast precursors are present. Such mesenchymally derived cells may play a role in pathological osteolysis and may be involved in osteoclast formation in extraskeletal tissues.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read
10934644
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"