Add like
Add dislike
Add to saved papers

The in vitro effects of cytokines on expansion and migration of megakaryocyte progenitors.

Increasing the number of megakaryocyte progenitors in stem cell transplants by ex vivo expansion culture may be an approach to accelerate platelet recovery in patients undergoing high-dose chemotherapy. We evaluated the effect of three different cytokine combinations on expansion, with special emphasis on the type of colony formation and migration of megakaryocytic cells. The number of clonogenic megakaryocyte progenitors (colony-forming units-megakaryocyte; CFU-Mk) with high- (> 20 cells/colony) and low-proliferative capacity (5-20 cells/colony) and the number of megakaryocytic (CD61+) cells were significantly increased by including interleukin 3 (IL-3) or IL-3 + IL-6 + IL-11 + Flt3-ligand to cultures containing megakaryocyte growth and development factor (MGDF) plus stem cell factor (SCF). No difference in the maturation of megakaryocytes from all three cytokine combinations to platelets were observed, as demonstrated by electron microscopy. In chemotaxis experiments, the migration towards stromal cell-derived factor 1 (SDF-1) was shown to be reduced for CD61+ cells and megakaryocyte progenitors cultured in other cytokines besides MGDF + SCF. The reduced migration was related to a lower expression of CXCR4, the receptor for SDF-1, on megakaryocytes from the proliferating cultures. These in vitro results demonstrate that expansion in IL-3 and other cytokines besides MGDF + SCF significantly impair the capacity of megakaryocytic cells to migrate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app