COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Effects of delayed intraischemic and postischemic hypothermia on a focal model of transient cerebral ischemia in rats.

BACKGROUND AND PURPOSE: Intraischemic mild hypothermia has been shown to be neuroprotective in reducing cerebral infarction in transient focal ischemia. As a more clinical relevant issue, we investigated the effect of delayed intraischemic and postischemic hypothermia on cerebral infarction in a rat model of reversible focal ischemia. We also examined the effect of hypothermia on the inflammatory response after ischemia-reperfusion to assess the neuroprotective mechanism of brain hypothermia.

METHODS: Rats were subjected to 2 hours of middle cerebral artery occlusion followed by 22 hours of reperfusion under the following protocols: (1) rats were treated with normothermia (37.0 degrees C, 4 hours) and then housed in room temperature (25 degrees C, 18 hours) and (2) rats were treated with hypothermia (33.0 degrees C, 4 hours, brain temperature modulation was started 30 minutes before the reperfusion) and then housed in cold temperature (5 degrees C, 18 hours). Animals were killed 24 hours after the onset of ischemia. The infarct volume was examined with 2,3,5-triphenyl-tetrazolium chloride staining. The accumulation of polymorphonuclear leukocytes (PMNLs) and the expression of intercellular adhesion molecule-1 mRNA were evaluated in both groups.

RESULTS: A significant reduction (P<0.05) in infarct volume was found in the hypothermia group compared with the normothermia group. Compared with the normothermia group, hypothermic treatment also significantly reduced the accumulation of PMNLs (P<0.01) and inhibited the overexpression of intercellular adhesion molecule-1 mRNA at 22 hours of reperfusion after 2 hours of ischemia.

CONCLUSIONS: Ischemic brain damage can be reduced with delayed intraischemic and prolonged postischemic hypothermia in a focal model of transient cerebral ischemia in rats. The neuroprotective mechanism of hypothermia may be mediated by suppression of PMNL-mediated inflammatory response after ischemia-reperfusion in this model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app