Add like
Add dislike
Add to saved papers

A cholesteryl ester transfer protein inhibitor attenuates atherosclerosis in rabbits.

Nature 2000 July 14
Cholesteryl ester transfer protein (CETP) is a plasma protein that mediates the exchange of cholesteryl ester in high-density lipoprotein (HDL) for triglyceride in very low density lipoprotein (VLDL). This process decreases the level of anti-atherogenic HDL cholesterol and increases pro-atherogenic VLDL and low density lipoprotein (LDL) cholesterol, so CETP is potentially atherogenic. On the other hand, CETP could also be anti-atherogenic, because it participates in reverse cholesterol transport (transfer of cholesterol from peripheral cells through the plasma to the liver). Because the role of CETP in atherosclerosis remains unclear, we have attempted to develop a potent and specific CETP inhibitor. Here we describe CETP inhibitors that form a disulphide bond with CETP, and present one such inhibitor (JTT-705) that increases HDL cholesterol, decreases non-HDL cholesterol and inhibits the progression of atherosclerosis in rabbits. Our findings indicate that CETP may be atherogenic in vivo and that JTT-705 may be a potential anti-atherogenic drug.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app