JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Amygdaloid-thalamic interactions mediate the antinociceptive action of morphine microinjected into the periaqueductal gray.

The bilateral administration of the serotonin receptor antagonist methysergide (2.5 microg, 5 microg, and 10 microg) into either the central nucleus of the amygdala (ACe) or nucleus parafascicularis thalami (nPf) produced dose-dependent inhibition of the antinociceptive action of ventrolateral periaqueductal gray (vPAG)-administered morphine. Unilateral administration of these doses of methysergide into either the ACe or nPf had no effect on morphine-induced antinociception. However, the combined unilateral administration of these doses of methysergide into the ACe and nPf produced dose-dependent inhibition of morphine antinociception that was identical to that observed after its bilateral administration into either site. This latter finding is interpreted as evidence that a functional interaction between the ACe and nPf supports the antinociceptive action of morphine administered into the vPAG.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app