Journal Article
Review
Add like
Add dislike
Add to saved papers

Mechanisms of the effects of grains on insulin and glucose responses.

Consumption of a number of grains and grain extracts has been reported to control or improve glucose tolerance and reduce insulin resistance. The inability of the body to maintain normal glucose levels or to require excessive levels of insulin to do so has been called glucose intolerance, impaired glucose tolerance and insulin resistance. These conditions are associated with obesity and may be preliminary steps in the progression to type 2 diabetes mellitus. Although dietary goals recommend the consumption of three servings of whole grains per day, average consumption in the United States is less than one serving per day. There are a number of mechanisms by which grains may improve glucose metabolism and delay or prevent the progression of impaired glucose tolerance to insulin resistance and diabetes. These mechanisms are related to the physical properties and structure of grains. The composition of the grain, including particle size, amount and type of fiber, viscosity, amylose and amylopectin content all affect the metabolism of carbohydrates from grains. Increasing whole grain intake in the population can result in improved glucose metabolism and delay or reduce the risk of developing type 2 diabetes mellitus. Whole grains can provide a substantial contribution to the improvement of the diets of Americans. A number of whole grain foods and grain fiber sources are beneficial in reduction of insulin resistance and improvement in glucose tolerance. Form, amount and method of cooking of these foods as well as the health characteristics, age and gender of the group of subjects studied are all important factors in the effectiveness of the foods in altering these responses. Dietary recommendations of health organizations suggest consumption of three servings a day of whole grain foods; however, Americans generally fall below this standard. Recent research using various grains and grain products effective in improving insulin resistance or lowering glycemic index will be discussed below by possible mechanisms of action.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app