IN VITRO
JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Flow visualization in mechanical heart valves: occluder rebound and cavitation potential.

High density particle image velocimetry, with spatial resolution of O(1 mm), was used to measure the effect of occluder rebound on the flow field near a Bjork-Shiley Monostrut tilting-disk mitral valve. The ability to measure two velocity components over an entire plane simultaneously provides a very different insight into the flow compared to the more traditional point to point techniques (like Laser Doppler Velocimetry) that were utilized in previous investigations of the regurgitant flow. A picture of the effects of occluder rebound on the fluid flow in the atrial chamber is presented. Specifically, fluid velocities in excess of 1.5 m/s traveling away from the atrial side were detected 3 mm away from the valve seat in the local low pressure region created by the occluder rebound on the major orifice side where cavitation has been observed. This analysis is the first spatially detailed flow description of the effects of occluder rebound on the flow field past a tilting-disk mechanical heart valve and further reinforces the hypothesis that the rebound effect plays a significant role in the formation of cavitation, which has been implicated in the hemolysis and wear associated with tilting-disk valves in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app