JOURNAL ARTICLE

Angiotensin II activates nuclear transcription factor kappaB through AT(1) and AT(2) in vascular smooth muscle cells: molecular mechanisms

M Ruiz-Ortega, O Lorenzo, M Rupérez, S König, B Wittig, J Egido
Circulation Research 2000 June 23, 86 (12): 1266-72
10864918
Nuclear factor-kappaB (NF-kappaB) regulates many genes involved in vascular physiopathology. We have previously observed in vivo NF-kappaB activation in injured vessels that diminished by angiotensin-converting enzyme inhibition. In the present work, we investigated the effect of angiotensin II (Ang II) on NF-kappaB activity in rat vascular smooth muscle cells, evaluating the molecular mechanisms and the specific receptor subtype involved. Ang II increased NF-kappaB DNA binding (5-fold, 10(-)(9) mol/L at 1 hour; electrophoretic mobility shift assay), nuclear translocation of p50/p65 subunits, and cytosolic inhibitor kappaBalpha (IkappaBalpha) degradation. Ang II elicited NF-kappaB-mediated transcription (transfection of a reporter gene) and expression of NF-kappaB-related genes (monocyte chemoattractant protein-1 and angiotensinogen). AT(1) (DUP753) and AT(2) (PD123319 and CGP42112) receptor antagonists inhibited Ang II-induced NF-kappaB DNA binding in a dose-dependent manner ( approximately 85% for each one; 10(-)(5) mol/L at 1 hour). The AT(2) agonist p-aminophenylalanine(6)-Ang II augmented NF-kappaB binding (4.6-fold, 10(-)(9) mol/L at 1 hour), p65 nuclear levels, and transcription of an NF-kappaB reporter gene. AT(1) antagonist markedly inhibited NF-kappaB-mediated transcription and gene expression. Some differences between AT(1)/AT(2) intracellular signals were found. Antioxidants and ceramide inhibitors, but not protein kinase C inhibitors, diminished NF-kappaB activation elicited by both Ang II and the AT(2) agonist, while tyrosine kinase inhibitors only decreased Ang II-induced NF-kappaB activity. Our results demonstrate that Ang II activates NF-kappaB via AT(1) and AT(2), although NF-kappaB-mediated transcription occurred mainly through AT(1). Both receptors share some signaling pathways (oxygen radicals and ceramide); however, tyrosine kinases only participate in AT(1)/NF-kappaB responses. These data provide novel insights into Ang II actions, suggesting a potential implication of the AT(2) in the pathobiology of vascular cells.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read
10864918
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"