JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Microbial dynamics in a continuous stirred tank bioreactor exposed to an alternating sequence of organic compounds.

Microbial dynamics during aerobic biodegradation of an alternating mixture of organic compounds was investigated experimentally in a continuous stirred tank bioreactor (CSTB). A mathematical model describing this system was developed and tested using the experimental results. A model microbial culture consisting of Pseudomonas sp. JS150, a monochlorobenzene (MCB) degrader, and Xanthobacter autotrophicus GJ10, a 1,2-dichloroethane (DCE) degrader, each with exclusive degradation capabilities, was used. The CSTB was inoculated with both microbial strains and exposed to an alternating sequence of the two compounds at noninhibitory concentrations. Concentrations of each microbial strain, of each organic compound, and of degradation product evolved, as well as specific microbial activities via oxygen uptake tests, were monitored. Reduction of the residual DCE discharged from the bioreactor after an MCB to DCE transition was successfully achieved by continuously feeding a low flow of a concentrated solution of both compounds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app