Add like
Add dislike
Add to saved papers

Phosphotransacetylase as a key factor in biological production of polyhydroxybutyrate.

Phosphotransacetylase (Pta) catalyzes the reversible conversion of acetyl-coenzyme A (CoA) to acetyl phosphate. Polyhydroxybutyrate (PHB) synthase and accumulation were compared between a Pta-deficient mutant and the wild-type Escherichia coli, which were transformed with pAE100, coding for 3-ketothiolase, NADPH-dependent acetoacetyl-CoA reductase, and PHB synthase from Ralstonia eutropha. During the growth period, PHB synthase activity in the Pta-deficient mutant was lower than that in the wild type. PHB accumulation in the Pta-deficient mutant, however, was higher than that in wild-type cells grown in Luria-Bertani (LB) medium containing 1% glucose (high C:N ratio). The Pta-deficient mutant showed PHB accumulation even in LB medium (low C:N ratio), whereas wild-type cells showed no PHB accumulation. These data suggest the activation of PHB synthase by acetyl phosphate that is synthesized by Pta. A decrease in Pta activity probably causes some increase in acetyl-CoA as substrate for the PHB synthesis pathway, resulting in increased PHB accumulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app