RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

XDH gene mutation is the underlying cause of classical xanthinuria: a second report.

BACKGROUND: Classical xanthinuria is a rare autosomal recessive disorder characterized by excessive excretion of xanthine in urine. Type I disease results from the isolated deficiency of xanthine dehydrogenase (XDH), and type II results from dual deficiency of XDH and aldehyde oxidase. The XDH gene has been cloned and localized to chromosome 2p22-23. The aim of this study was to characterize the molecular basis of classical xanthinuria in an Iranian-Jewish family.

METHODS: The apparently unrelated parents originated from a community in which consanguineous marriages are common. Subtyping xanthinuria was attempted by homozygosity mapping using microsatellite markers D2S352, D2S367, and D2S2374 in the vicinity of the XDH gene. Mutation detection was accomplished by PCR-SSCP screening of all 36 exons and exon-intron junctions of the XDH gene, followed by direct sequencing and confirmation of sequence alteration by restriction analysis.

RESULTS: The index case was homozygous for all three microsatellite markers analyzed. The expected frequency of this genotype in a control population was 0. 0002. These results suggested that xanthinuria in the patient is linked to the XDH gene. Consequently, a 1658insC mutation in exon 16 of the XDH gene was identified. The 1658insC mutation was not detected in 65 control DNA samples.

CONCLUSION: A molecular approach to the diagnosis of classical xanthinuria type I in a female patient with profound hypouricemia is described. Linkage of xanthinuria to the XDH locus was demonstrated by homozygosity mapping, and a 1658insC mutation, predicting a truncated inactive XDH protein, was identified. These results reinforce the notion that mutations in the XDH gene are the underlying cause of classical xanthinuria type I.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app