JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain.

Biochemical Journal 2000 June 16
Although metformin is widely used for the treatment of non-insulin-dependent diabetes, its mode of action remains unclear. Here we provide evidence that its primary site of action is through a direct inhibition of complex 1 of the respiratory chain. Metformin(50 microM) inhibited mitochondrial oxidation of glutamate+malate in hepatoma cells by 13 and 30% after 24 and 60 h exposure respectively, but succinate oxidation was unaffected. Metformin also caused time-dependent inhibition of complex 1 in isolated mitochondria, whereas in sub-mitochondrial particles inhibition was immediate but required very high metformin concentrations (K(0.5),79 mM). These data are compatible with the slow membrane-potential-driven accumulation of the positively charged drug within the mitochondrial matrix leading to inhibition of complex 1. Metformin inhibition of gluconeogenesis from L-lactate in isolated rat hepatocytes was also time- and concentration-dependent, and accompanied by changes in metabolite levels similar to those induced by other inhibitors of gluconeogenesis acting on complex 1. Freeze-clamped livers from metformin-treated rats exhibited similar changes in metabolite concentrations. We conclude that the drug's pharmacological effects are mediated, at least in part, through a time-dependent, self-limiting inhibition of the respiratory chain that restrains hepatic gluconeogenesis while increasing glucose utilization in peripheral tissues. Lactic acidosis, an occasional side effect, canal so be explained in this way.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app