COMPARATIVE STUDY
JOURNAL ARTICLE

Multiple imputation compared with some informative dropout procedures in the estimation and comparison of rates of change in longitudinal clinical trials with dropouts

M W Ali, O Siddiqui
Journal of Biopharmaceutical Statistics 2000, 10 (2): 165-81
10803723
Statistical analysis based on multiple imputation (MI) of missing data when analyzing data with missing observations is gaining popularity among statisticians because of availability of computing softwares; it might be tempting to use MI whenever data is missing. An important assumption behind MI is the "ignorability of missingness." In this paper, we demonstrate the use of MI in conjunction with random effects models and several other methods that are devised to handle nonignorable missingness (informative dropouts). We then compare the results to assess sensitivity to underlying assumptions. Our focus is primarily to estimate and compare rates of change (of a primary variable). The application dataset has a high dropout rate and has features to suggest informativeness of the dropout process. The estimates obtained under random effects modeling with multiple imputation were found to differ substantially from those obtained by methods devised to handle informative dropouts.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read
10803723
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"