Add like
Add dislike
Add to saved papers

Serotonin receptor subtypes involved in the spinal antinociceptive effect of 5-HT in rats.

Pain 2000 May
The present study was designed to investigate which subtypes of spinal 5-HT receptors are involved in 5-HT-induced antinociception using the mechanical pain test. Serotonin and various selective antagonists or agonists for 5-HT receptor subtypes (5-HT(1A), 5-HT(1B), 5-HT(2A), 5-HT(2C), 5-HT(3) and 5-HT(4)) were administered intrathecally (i.t.) in rats. The i.t. injection of 5-HT (1 microg) produced significant antinociceptive effects using the paw pressure test. Pretreatment with the 5-HT(2C) receptor antagonist mesulergine (1 and 10 microg) and the 5-HT(3) receptor antagonist tropisetron (1 and 10 microg) reversed totally the antinociception induced by 5-HT. Furthermore, at a dose of 10 microg, both the 5-HT(2A) receptor antagonist ketanserin and the 5-HT(1B) receptor antagonist penbutolol, but neither the 5-HT(1A) receptor antagonist WAY 100635 nor the 5-HT(4) receptor antagonist GR113808, attenuated the antinociceptive effect induced by 5-HT. In addition, an i.t. injection of the 5-HT(3) agonist mCPBG induced significant antinociceptive effects whereas the 5-HT(2) agonist DOI did not produce analgesia. These results suggest that although the precise degree of the involvement of spinal serotonergic 5-HT(3) receptors remains to be elucidated due to some differences in the effect of agonists or antagonists, these receptors seem to play a role in the antinociceptive effect of 5-HT against a mechanical acute noxious stimulus. The involvement of 5-HT(2C) is more questionable due to the observed discrepancies between the effects of the used agonist and antagonist. 5-HT(1A) and 5-HT(4) receptors do not seem to be involved. In addition, a possible functional interaction between spinal serotonergic receptors may exist.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app