Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Induction of differentiation by 1alpha-hydroxyvitamin D(5) in T47D human breast cancer cells and its interaction with vitamin D receptors.

The role of the active metabolite of vitamin D, 1,25 dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), in cell differentiation is well established. However, its use as a differentiating agent in a clinical setting is precluded due to its hypercalcaemic activity. Recently, we synthesised a relatively non-calcaemic analogue of vitamin D(5), 1alpha-hydroxyvitamin D(5) (1alpha(OH)D(5)), which inhibited the development of carcinogen-induced mammary lesions in culture and suppressed the incidence of chemically induced mammary carcinogmas in rats. In the present study, we determined the differentiating effects of 1alpha-(OH)D(5) in T47D human breast cancer cells and compared its effects with 1,25(OH)(2)D(3). Cells incubated with either 10 or 100 nM of the analogues inhibited cell proliferation in a dose-dependent manner, as measured by the dimethylthiazolyl-2,5-diphenyltetrazolium bromide (MTT) assay. Similar growth-inhibitory effects were also observed for MCF10(neo) cells. Both vitamin D analogues induced cell differentiation, as determined by induction of casein expression and lipid production. However, MCF10(neo) cells failed to respond to either vitamin D analogue and did not undergo cell differentiation. Since the cell differentiating effect of vitamin D is considered to be mediated via the vitamin D receptor (VDR), we examined the induction of VDR using reverse transcriptase-polymerase chain reaction (RT-PCR) in both cells. The results showed that, in T47D cells, both 1,25(OH)(2)D(3) and 1alpha(OH)D(5) induced VDR in a dose-dependent manner. Moreover, both analogues of vitamin D upregulated the expression of vitamin D response element-chloramphenicol acetyl transferase (VDRE-CAT). These results collectively indicate that 1alpha-(OH)D(5) may mediate its cell-differentiating action via VDR in a manner similar to that of 1,25(OH)(2)D(3).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app