JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
REVIEW
Add like
Add dislike
Add to saved papers

Regulation of coronary vasomotor tone under normal conditions and during acute myocardial hypoperfusion.

Ischemia generally has been assumed to cause maximal vasodilation of the coronary resistance vessels. However, recent observations have demonstrated that during ischemia, the coronary microvessels can retain some degree of vasodilator reserve and remain responsive to vasoconstrictor stimuli. Traditional understanding of coronary blood flow regulation envisioned an array of resistance vessels that respond homogeneously to local myocardial metabolic needs. Although coronary arterioles (<100 microm) do respond to myocardial metabolic activity, recent studies have demonstrated that up to 40% of total coronary resistance resides in small arteries 100-400 microm in diameter. Vasoconstriction of these small arteries is capable of decreasing blood flow, but they are minimally responsive to the metabolic effects of the resultant flow reduction. The lack of metabolic vasoregulation of the resistance arteries explains, at least in part, the observation that myocardial ischemia does not predictably cause maximal resistance vessel dilation. In addition, vasoconstrictor influences can compete with metabolic vasodilator activity in coronary arterioles. These findings suggest that pharmacologic vasodilators acting at the microvascular level might be therapeutically useful in patients with ischemic heart disease. Unfortunately, when myocardial ischemia results from a flow-limiting coronary stenosis, nonselective pharmacologic vasodilation of the resistance vessels can worsen subendocardial ischemia by decreasing intravascular pressure to produce coronary steal and by worsening of stenosis severity. Selective dilation of small arteries in ischemic regions might have potential for enhancing blood flow. A critical property of an effective agent is that it not interfere with metabolic vasoregulation at the arteriole level, so that dilation of small arteries in adequately perfused regions would be countered by compensatory vasoconstriction of the arterioles to prevent coronary steal.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app