JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Cloning and disruption of pgx4 encoding an in planta expressed exopolygalacturonase from Fusarium oxysporum.

Fusarium oxysporum f. sp. lycopersici, the causal agent of tomato vascular wilt, produces an array of pectinolytic enzymes, including at least two exo-alpha1,4-polygalacturonases (exoPGs). A gene encoding an exoPG, pgx4, was isolated with degenerate polymerase chain reaction primers derived from amino acid sequences conserved in two fungal exoPGs. pgx4 encodes a 454 amino acid polypeptide with nine potential N-glycosylation sites and a putative 21 amino acid N-terminal signal peptide. The deduced mature protein has a calculated molecular mass of 47.9 kDa, a pI of 8.0, and 51 and 49% identity with the exoPGs of Cochliobolus carbonum and Aspergillus tubingensis, respectively. The gene is present in a single copy in different formae speciales of F. oxysporum. Expression of pgx4 was detected during in vitro growth on pectin, polygalacturonic acid, and tomato vascular tissue and in roots and stems of tomato plants infected by F. oxysporum f. sp. lycopersici. Two mutants of F. oxysporum f. sp. lycopersici with a copy of pgx4 inactivated by gene replacement were as virulent on tomato plants as the wild-type strain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app