Journal Article
Research Support, U.S. Gov't, P.H.S.
Review
Add like
Add dislike
Add to saved papers

Beta-adrenergic receptor-G protein-adenylyl cyclase signal transduction in the failing heart.

The beta-adrenergic receptor signal transduction pathway is critical for rapid adjustments to increased cardiovascular demand (e.g., during exercise). In the face of chronic stimulation of this pathway, as occurs in the pathogenesis of heart failure, beta-adrenergic receptor stimulation may become maladaptive. Under these conditions, elevation of circulating catecholamines and depletion of cardiac tissue stores of norepinephrine occur in the failing heart, resulting in desensitization. Whether or not stimulation or inhibition of the beta-adrenergic receptor signaling pathway is beneficial in heart failure is controversial. One approach to address this question is to specifically overexpress a component of the beta-adrenergic receptor signaling pathway in a transgenic mouse heart. We have characterized young and old adult mice with overexpressed cardiac G(s alpha) which couples the beta-adrenergic receptor to adenylyl cyclase. In younger animals, beta-adrenergic receptor stimulation results in an augmented heart rate and cardiac contractility. Over the life of the animal, however, a picture of cardiomyopathy develops. The result is a dilated heart with a large amount of fibrosis and myocyte hypertrophy, degeneration atrophy, and apoptosis. Conversely, chronic beta-adrenergic receptor blockade prevents the development of cardiomyopathy. These experiments support the point of view that chronic beta-adrenergic stimulation during the development of heart failure is deleterious and that protecting the heart with chronic beta-adrenergic receptor blockade is salutary, conceptually consistent with results of recent clinical trials examining the effects of beta-adrenergic receptor blockers in patients with heart failure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app