Obtaining marginal estimates from conditional categorical repeated measurements models with missing data

J K Lindsey
Statistics in Medicine 2000 March 30, 19 (6): 801-9
The most commonly used models for categorical repeated measurement data are log-linear models. Not only are they easy to fit with standard software but they include such useful models as Markov chains and graphical models. However, these are conditional models and one often also requires the marginal probabilities of responses, for example, at each time point in a longitudinal study. Here a simple method of matrix manipulation is used to derive the maximum likelihood estimates of the marginal probabilities from any such conditional categorical repeated measures model. The technique is applied to the classical Muscatine data set, taking into account the dependence of missingness on previous observed values, as well as serial dependence and a random effect.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"