RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Structural defects underlying protein dysfunction in human glucose-6-phosphate dehydrogenase A(-) deficiency.

The enzyme variant glucose-6-phosphate dehydrogenase (G6PD) A(-), which gives rise to human glucose-6-phosphate dehydrogenase deficiency, is a protein of markedly reduced structural stability. This variant differs from the normal enzyme, G6PD B, in two amino acid substitutions. A further nondeficient variant, G6PD A, bears only one of these two mutations and is structurally stable. In this study, the synergistic structural defect in recombinant G6PD A(-) was reflected by reduced unfolding enthalpy due to loss of beta-sheet and alpha-helix interactions where both mutations are found. This was accompanied by changes in inner spatial distances between residues in the coenzyme domain and the partial disruption of tertiary structure with no significant loss of secondary structure. However, the secondary structure of G6PD A(-) was qualitatively affected by an increase in beta-sheets substituting beta-turns related to the lower unfolding enthalpy. The structural changes observed did not affect the active site of the mutant proteins, since its spatial position was unmodified. The final result is a loss of folding determinants leading to a protein with decreased intracellular stability. This is suggested as the cause of the enzyme deficiency in the red blood cell, which is unable to perform de novo protein synthesis.

Full text links

Management of Latent Tuberculosis Infection.JAMA 2023 January 20
How I Treat Multiple myeloma in the geriatric patient.Blood 2023 January 25

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app