JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Suppression of murine cytomegalovirus (MCMV) replication with a DNA vaccine encoding MCMV M84 (a homolog of human cytomegalovirus pp65).

The cytotoxic T-lymphocyte (CTL) response against the murine cytomegalovirus (MCMV) immediate-early gene 1 (IE1) 89-kDa phosphoprotein pp89 plays a major role in protecting BALB/c mice against the lethal effects of the viral infection. CTL populations specific to MCMV early-phase and structural antigens are also generated during infection, but the identities of these antigens and their relative contributions to overall immunity against MCMV are not known. We previously demonstrated that DNA vaccination with a pp89-expressing plasmid effectively generated a CTL response and conferred protection against infection (J. C. Gonzalez Armas, C. S. Morello, L. D. Cranmer, and D. H. Spector, J. Virol. 70:7921-7928, 1996). In this report, we have sought (i) to identify other viral antigens that contribute to immunity against MCMV and (ii) to determine whether the protective response is haplotype specific. DNA immunization was used to test the protective efficacies of plasmids encoding MCMV homologs of human cytomegalovirus (HCMV) tegument (M32, M48, M56, M82, M83, M69, and M99), capsid (M85 and M86), and nonstructural antigens (IE1-pp89 and M84). BALB/c (H-2(d)) and C3H/HeN (H-2(k)) mice were immunized by intradermal injection of either single plasmids or cocktails of up to four expression plasmids and then challenged with sublethal doses of virulent MCMV administered intraperitoneally. In this way, we identified a new viral gene product, M84, that conferred protection against viral replication in the spleens of BALB/c mice. M84 is expressed early in the infection and encodes a nonstructural protein that shares significant amino acid homology with the HCMV UL83-pp65 tegument protein, a major target of protective CTLs in humans. Specificity of the immune response to the M84 protein was confirmed by showing that immunization with pp89 DNA, but not M84 DNA, protected mice against subsequent infection with an MCMV deletion mutant lacking the M84 gene. The other MCMV genes tested did not generate a protective response even when mice were immunized with vaccinia viruses expressing the viral proteins. However, the M84 plasmid was protective when injected in combination with nonprotective plasmids, and coimmunization of BALB/c mice with pp89 and M84 provided a synergistic level of protection in the spleen. Viral titers in the salivary glands were also reduced, but not to the same extent as observed in the spleen, and the decrease was seen only when the BALB/c mice were immunized with pp89 plus M84 or with pp89 alone. The experiments with the C3H/HeN mice showed that the immunity conferred by DNA vaccination was haplotype dependent. In this strain of mice, only pp89 elicited a protective response as measured by a reduction in spleen titer. These results suggest that DNA immunization with the appropriate combination of CMV genes may provide a strategy for improving vaccine efficacy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app