COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

DNA-dependent protein kinase stimulates an independently active, nonhomologous, end-joining apparatus.

Cancer Research 2000 March 2
Double-strand breaks (DSBs) can be efficiently removed from the DNA of higher eukaryotes by nonhomologous end-joining (NHEJ). Genetic studies implicate the DNA-dependent protein kinase (DNA-PK) in NHEJ, but the exact function of this protein complex in the rejoining reaction remains to be elucidated. We compared rejoining of DNA DSBs in a human glioma cell line, M059-J, lacking the catalytic subunit of DNA-PK (DNA-PKcs), and their isogenic but DNA-PK-proficient counterpart, M059-K. In both cell lines, rejoining of DNA DSBs was biphasic, with a fast and a slow component operating with a half-life of approximately 22 min and 12 h, respectively. Deficiency in DNA-PK activity did not alter the half-times of either of these components of rejoining but increased from 17 to 72% the proportion of DNA DSB rejoining with slow kinetics. DNA DSB rejoining was nearly complete in both cell lines, and there was only a small increase in the number of unrejoined breaks in M059-J as compared with M059-K cells after 30 h of incubation. Wortmannin radiosensitized to killing M059-K cells and strongly inhibited DNA DSB rejoining. Wortmannin did not affect the radiosensitivity to killing and produced only a modest inhibition in DNA DSB rejoining in M059-J cells, suggesting that, for these end points, DNA-PK is the principal target of the drug. These observations demonstrate that DNA-PK deficiency profoundly decreases the proportion of DNA DSB rejoining with fast kinetics but has only a small effect on the fraction remaining unrejoined. We propose that in higher eukaryotes, an evolutionarily conserved, independently active, but inherently slow NHEJ pathway is stimulated 30-fold by DNA-PKcs to rapidly remove DNA DSBs from the genome. The stimulation is expected to be of local nature and the presence of DNA-PKcs in the vicinity of the DNA DSB determines whether rejoining will follow fast or slow kinetics. Structural and regulatory functions of DNA-PKcs may mediate this impressive acceleration of DNA DSB rejoining, and regions of chromatin within a certain range from this large protein may benefit from these activities. We propose the term DNA-PK surveillance domains to describe these regions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app