Attenuation of the neuropsychiatric effects of ketamine with lamotrigine: support for hyperglutamatergic effects of N-methyl-D-aspartate receptor antagonists

A Anand, D S Charney, D A Oren, R M Berman, X S Hu, A Cappiello, J H Krystal
Archives of General Psychiatry 2000, 57 (3): 270-6

BACKGROUND: The cognitive, behavioral, and mood effects of N-methyl-D-aspartate (NMDA) receptor antagonists, such as phencyclidine and ketamine, have been used to study the effects of NMDA receptor dysfunction. Pharmacological modulation of the effects of NMDA receptor antagonists, such as ketamine, may lead to development of novel therapeutic agents for psychiatric illnesses such as schizophrenia. Preclinical studies indicate that some ketamine effects may be mediated through increased glutamate release. In this study, we tested the hypothesis that lamotrigine, a drug reported to inhibit glutamate release, will reduce the neuropsychiatric effects of ketamine in humans.

METHOD: Healthy subjects (n = 16) completed 4 test days involving the administration of lamotrigine, 300 mg by mouth, or placebo 2 hours prior to administration of ketamine (0.26 mg/kg by intravenous bolus and 0.65 mg/kg per hour by intravenous infusion) or placebo in a randomized order under double-blind conditions. Behavioral and cognitive assessments were performed at baseline and after administration of the medications.

RESULTS: Lamotrigine significantly decreased ketamine-induced perceptual abnormalities as assessed by the Clinician-Administered Dissociative States Scale (P<.001); positive symptoms of schizophrenia as assessed by the Brief Psychiatric Rating Scale positive symptoms subscale (P<.001); negative symptoms as assessed by the Brief Psychiatric Rating Scale negative symptoms subscale (P<.05); and learning and memory impairment as assessed by the Hopkins Verbal Learning Test (P<.05). However, lamotrigine increased the immediate mood-elevating effects of ketamine (P<.05).

CONCLUSIONS: Glutamate release-inhibiting drugs may reduce the hyperglutamatergic consequences of NMDA receptor dysfunction implicated in the pathophysiologic processes of neuropsychiatric illnesses such as schizophrenia. Further study is needed.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"