Add like
Add dislike
Add to saved papers

Improving diagnostic accuracy using a hierarchical neural network to model decision subtasks.

A number of quantitative models including linear discriminant analysis, logistic regression, k nearest neighbor, kernel density, recursive partitioning, and neural networks are being used in medical diagnostic support systems to assist human decision-makers in disease diagnosis. This research investigates the decision accuracy of neural network models for the differential diagnosis of six erythematous-squamous diseases. Conditions where a hierarchical neural network model can increase diagnostic accuracy by partitioning the decision domain into subtasks that are easier to learn are specifically addressed. Self-organizing maps (SOM) are used to portray the 34 feature variables in a two dimensional plot that maintains topological ordering. The SOM identifies five inconsistent cases that are likely sources of error for the quantitative decision models; the lower bound for the diagnostic decision error based on five errors is 0.0140. The traditional application of the quantitative models cited above results in diagnostic error levels substantially greater than this target level. A two-stage hierarchical neural network is designed by combining a multilayer perceptron first stage and a mixture-of-experts second stage. The second stage mixture-of-experts neural network learns a subtask of the diagnostic decision, the discrimination between seborrheic dermatitis and pityriasis rosea. The diagnostic accuracy of the two stage neural network approaches the target performance established from the SOM with an error rate of 0.0159.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app