JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Improved cholecalciferol nutrition in rats is noncalcemic, suppresses parathyroid hormone and increases responsiveness to 1, 25-dihydroxycholecalciferol.

We examined how cholecalciferol (vitamin D) nutrition affected serum 25-hydroxycholecalciferol (25(OH)D) and 1, 25-dihydroxycholecalciferol (1,25(OH)(2)D). Rats were fed conventional diet (vitamin D, 4.5 IU/g, or 7 nmol/d) or the same diet plus 18 nmol/d of extra vitamin D for 3 wk. The extra vitamin D resulted in greater serum 25(OH)D (51 +/- 3, vs. control of 21 +/- 2 nmol/L), and kidney mRNA for vitamin D receptor [VDR mRNA] (P = 0. 026) and lower serum 1,25(OH)(2)D (72 +/- 16 vs. control of 161 +/- 10 pmol/L, P = 0.001), and parathyroid hormone (PTH) (89 +/- 4 vs. control of 160 +/- 15 ng/L, P = 0.001). Kidney VDR mRNA relative to GAPDH mRNA correlated inversely with serum 1,25(OH)(2)D (r = -0.714, P = 0.006). There were no differences in serum calcium, phosphate, alkaline phosphatase, or weight gain. Experiment 2 compared groups supplemented with 0.2, 2 or 20 nmol/d of vitamin D orally, or 20 nmol/d dermally to see how vitamin D nutrition influenced the response of 1,25(OH)(2)D to changes in diet calcium. Vitamin D did not affect urinary calcium or pyridinoline excretion, serum calcium, phosphate, vitamin D binding protein or alkaline phosphatase. In groups given 20 nmol/d of vitamin D, renal mitochondrial 25(OH)D-1alpha-hydroxylase was lower (P < 0.01) and 25(OH)D-24-hydroxylase was higher (P < 0.05). Higher 25(OH)D concentration was related to proportionally lower 1,25(OH)(2)D at every calcium intake, indicating greater tissue sensitivity to 1, 25(OH)(2)D. We conclude suppression of 1,25(OH)(2)D and PTH, and higher renal VDR mRNA and 24-hydroxylase did not involve higher free 1,25(OH)(2)D concentration or a first pass effect at the gut. Thus, 25(OH)D or a metabolite other than 1,25(OH)(2)D is a physiological, transcriptionally and biochemically active, noncalcemic vitamin D metabolite.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app