JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Effects of antagonists to high-threshold calcium channels upon spinal mechanisms of pain, hyperalgesia and allodynia.

Pain 2000 March
High-threshold voltage-dependent calcium channels enable calcium ions to enter neurons upon depolarization and thereby influence synaptic mediator/receptor systems, membrane excitability levels, second and third messenger concentration, and gene expression. These phenomena underlie several processes including those of normal nociception and of hyperalgesia and allodynia. The present article deals with the role of spinal L-, N- and P/Q-type calcium channels in short-lasting nociception as well as in the hyperalgesia and allodynia elicited by chemical irritants of peripheral nociceptors, inflammatory and mechanical lesions of peripheral tissues, and lesions of peripheral nerves. The studies summarized herein are based on the spinal delivery of specific antagonists to high-threshold calcium channels, and reveal that blockade of L-type, P/Q-type and, particularly, N-type channels can prevent, attenuate, or both, subjective pain as well as primary and/or secondary hyperalgesia and allodynia in a variety of experimental and clinical conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app