Explicit and implicit neural mechanisms for processing of social information from facial expressions: a functional magnetic resonance imaging study

H Critchley, E Daly, M Phillips, M Brammer, E Bullmore, S Williams, T Van Amelsvoort, D Robertson, A David, D Murphy
Human Brain Mapping 2000, 9 (2): 93-105
The processing of changing nonverbal social signals such as facial expressions is poorly understood, and it is unknown if different pathways are activated during effortful (explicit), compared to implicit, processing of facial expressions. Thus we used fMRI to determine which brain areas subserve processing of high-valence expressions and if distinct brain areas are activated when facial expressions are processed explicitly or implicitly. Nine healthy volunteers were scanned (1.5T GE Signa with ANMR, TE/TR 40/3,000 ms) during two similar experiments in which blocks of mixed happy and angry facial expressions ("on" condition) were alternated with blocks of neutral faces (control "off" condition). Experiment 1 examined explicit processing of expressions by requiring subjects to attend to, and judge, facial expression. Experiment 2 examined implicit processing of expressions by requiring subjects to attend to, and judge, facial gender, which was counterbalanced in both experimental conditions. Processing of facial expressions significantly increased regional blood oxygenation level-dependent (BOLD) activity in fusiform and middle temporal gyri, hippocampus, amygdalohippocampal junction, and pulvinar nucleus. Explicit processing evoked significantly more activity in temporal lobe cortex than implicit processing, whereas implicit processing evoked significantly greater activity in amygdala region. Mixed high-valence facial expressions are processed within temporal lobe visual cortex, thalamus, and amygdalohippocampal complex. Also, neural substrates for explicit and implicit processing of facial expressions are dissociable: explicit processing activates temporal lobe cortex, whereas implicit processing activates amygdala region. Our findings confirm a neuroanatomical dissociation between conscious and unconscious processing of emotional information.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"