Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Changes in cold-induced vasodilatation, pain and cold sensation in fingers caused by repeated finger cooling in a cool environment.

Industrial Health 2000 January
To examine how repeated cooling of fingers with a rest pause schedule at work affects cold-induced vasodilatation (CIVD), pain and cold sensation in fingers, six healthy men aged 21 to 23 years immersed their left index fingers six times in stirred water at 10 degrees C for 10 minutes. After each cold-water immersion of the fingers, 5-minute rest pause was taken to observe the recovery process of the indicators. This cold-water immersion/rest pause test was carried out in a range of three ambient temperature conditions: 30 degrees C (warm), 25 degrees C (thermoneutral), and 20 degrees C (cool) as experienced in daily life. At the ambient temperatures of 30 degrees C and 25 degrees C, marked CIVD response occurred and the CIVD reactivity did not significantly change upon repetition of cold-water immersion. The lowered finger skin temperature also tended to recover quickly to the pre-immersion level during each post-immersion rest period. At the ambient temperature of 20 degrees C, however, the CIVD response weakened continuously upon repetition of immersion and almost disappeared during the final immersion. The recovery of finger skin temperature during each post-immersion rest was gradually delayed upon repetition of immersion. At every ambient temperature, finger pain and cold sensation induced by each cold-water immersion significantly decreased upon repetition of immersion and completely disappeared during each post-immersion rest period. Oral temperature during the experiment showed no significant change at the ambient temperatures of 25 degrees C and 30 degrees C, but it decreased significantly at the ambient temperature of 20 degrees C. These results suggest that in a cool work environment where the body core temperature is liable to decrease, repeated finger cooling may weaken CIVD reactivity and delay the recovery of finger temperature during post-immersion rest periods. In such lower ambient temperature work conditions, subjective judgements such as the decrease in finger pain and cold sensation during repeated finger cooling and the absence of them during post-immersion rest may not be reliable indicators for monitoring the risk of progressive tissue cooling and frostbite formation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app