JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Genotype-phenotype correlation in two frequent mutations and mutation update in type III glycogen storage disease.

Deficiency of glycogen debranching enzyme (AGL) activity causes glycogen storage disease type III (GSD-III). Generalized loss of AGL activity results in GSD-IIIa, and muscle-specific retention of AGL activity results in GSD-IIIb. To date, no common mutation has been described among GSD-III patients, except for three alleles; two linked specifically with GSD-IIIb, and the third found only in North African Jews with GSD-IIIa. Here we report two frequent mutations, each of which was found in the homozygous state in multiple patients, and each of which was associated with a subset of clinical phenotype in those patients with that mutation. A novel point mutation of a single T deletion at cDNA position 3964 (3964delT) was first detected in an African American patient, who has a severe phenotype and early onset of clinical symptoms. The second mutation was an A to G transition at position -12 upstream of the 3' splice site of intron 32 (IVS32-12A > G). This lesion, previously implicated as a IIIb mutation in a Japanese patient, was identified in a confirmed GSD-IIIa Caucasian patient presenting with mild clinical symptoms. These two mutations together account for more than 12% of the molecular defects in the GSD-III patients tested. Our molecular and clinical data suggest a genotype-phenotype correlation for each of these mutations. Furthermore, this current study, coupled with our previous reports, describes the molecular tools necessary for the development of a DNA-based diagnostic test for GSD-III.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app