We have located links that may give you full text access.
Journal Article
Research Support, Non-U.S. Gov't
Cell adhesion molecules in the development of inflammatory infiltrates in giant cell arteritis: inflammation-induced angiogenesis as the preferential site of leukocyte-endothelial cell interactions.
Arthritis and Rheumatism 2000 January
OBJECTIVE: To investigate the expression pattern of adhesion molecules involved in leukocyte-endothelial cell interactions in giant cell arteritis (GCA).
METHODS: Immunohistochemical analysis was performed on frozen temporal artery sections from 32 patients with biopsy-proven GCA and from 12 control patients with other diseases. Adhesion molecules identified were intercellular adhesion molecule 1 (ICAM-1), ICAM-2, ICAM-3, vascular cell adhesion molecule 1 (VCAM-1), platelet endothelial cell adhesion molecule 1 (PECAM-1), E-selectin, P-selectin, L-selectin, lymphocyte function-associated antigen 1 (LFA-1), very late activation antigen 4 (VLA-4), Mac-1 (CD18/CD11b), and gp 150,95 (CD18/CD11c). Clinical and biochemical parameters of inflammation in the patients, as well as the duration of previous corticosteroid treatment, were prospectively recorded.
RESULTS: Constitutive (PECAM-1, ICAM-1, ICAM-2, and P-selectin) and inducible (E-selectin and VCAM-1) endothelial adhesion molecules for leukocytes were mainly expressed by adventitial microvessels and neovessels within inflammatory infiltrates. Concurrent analysis of leukocyte receptors indicated a preferential use of VLA-4/VCAM-1 and LFA-1/ICAM-1 at the adventitia and Mac-1/ICAM-1 at the intima-media junction. The intensity of inducible endothelial adhesion molecule expression (E-selectin and VCAM-1) correlated with the intensity of the systemic inflammatory response. Previous corticosteroid treatment reduced, but did not completely abrogate, the expression of the inducible endothelial adhesion molecules E-selectin and VCAM-1.
CONCLUSION: Inflammation-induced angiogenesis is the main site of leukocyte-endothelial cell interactions leading to the development of inflammatory infiltrates in GCA. The distribution of leukocyte-endothelial cell ligand pairs suggests a heterogeneity in leukocyte-endothelial cell interactions used by different functional cell subsets at distinct areas of the temporal artery.
METHODS: Immunohistochemical analysis was performed on frozen temporal artery sections from 32 patients with biopsy-proven GCA and from 12 control patients with other diseases. Adhesion molecules identified were intercellular adhesion molecule 1 (ICAM-1), ICAM-2, ICAM-3, vascular cell adhesion molecule 1 (VCAM-1), platelet endothelial cell adhesion molecule 1 (PECAM-1), E-selectin, P-selectin, L-selectin, lymphocyte function-associated antigen 1 (LFA-1), very late activation antigen 4 (VLA-4), Mac-1 (CD18/CD11b), and gp 150,95 (CD18/CD11c). Clinical and biochemical parameters of inflammation in the patients, as well as the duration of previous corticosteroid treatment, were prospectively recorded.
RESULTS: Constitutive (PECAM-1, ICAM-1, ICAM-2, and P-selectin) and inducible (E-selectin and VCAM-1) endothelial adhesion molecules for leukocytes were mainly expressed by adventitial microvessels and neovessels within inflammatory infiltrates. Concurrent analysis of leukocyte receptors indicated a preferential use of VLA-4/VCAM-1 and LFA-1/ICAM-1 at the adventitia and Mac-1/ICAM-1 at the intima-media junction. The intensity of inducible endothelial adhesion molecule expression (E-selectin and VCAM-1) correlated with the intensity of the systemic inflammatory response. Previous corticosteroid treatment reduced, but did not completely abrogate, the expression of the inducible endothelial adhesion molecules E-selectin and VCAM-1.
CONCLUSION: Inflammation-induced angiogenesis is the main site of leukocyte-endothelial cell interactions leading to the development of inflammatory infiltrates in GCA. The distribution of leukocyte-endothelial cell ligand pairs suggests a heterogeneity in leukocyte-endothelial cell interactions used by different functional cell subsets at distinct areas of the temporal artery.
Full text links
Related Resources
Trending Papers
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app