JOURNAL ARTICLE

Muscle phosphorus magnetic resonance spectroscopy oxidative indices correlate with physical activity

M C Tartaglia, J T Chen, Z Caramanos, T Taivassalo, D L Arnold, Z Argov
Muscle & Nerve 2000, 23 (2): 175-81
10639607
The purpose of this study was to assess the effect of physical deconditioning on skeletal muscle's oxidative metabolism as evaluated by phosphorus-31 magnetic resonance spectroscopy ((31)P MRS). Twenty-seven subjects without muscle disease, representing a wide range of fitness levels, were evaluated with (31)P MRS. Spectra were obtained at rest and during recovery from in-magnet exercise. The data show a significant correlation between maximum resting metabolic equivalent (MET) score and the following (31)P MRS recovery indices: adenosine diphosphate and phosphocreatine recovery half-time; initial phosphocreatine resynthesis rate; calculated estimation of mitochondrial capacity; pH at end of exercise; and phosphocreatine depletion. In addition, significant differences between the deconditioned and conditioned group were found for all of the aforementioned recovery indices. At rest, only the inorganic phosphate concentration was significantly different between the two groups. These data indicate that physical activity level should be taken into account when assessing patients' oxidative metabolism with (31)P MRS.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read
10639607
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"