RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Clinical, biochemical and molecular genetic correlations in Friedreich's ataxia.

Human Molecular Genetics 2000 January 23
Friedreich's ataxia (FRDA) is an autosomal recessive disorder with a frequency of 1 in 50 000 live births. In 97% of patients it is caused by the abnormal expansion of a GAA repeat in intron 1 of the FRDA gene on chromosome 9, which encodes a 210 amino acid protein called frataxin. Frataxin is widely expressed and has been localized to mitochondria although its function is unknown. We have investigated mitochondrial function, mitochondrial DNA levels, aconitase activity and iron content in tissues from FRDA patients. There were significant reductions in the activities of complex I, complex II/III and aconitase in FRDA heart. Respiratory chain and aconitase activities were decreased although not significantly in skeletal muscle, but were normal in FRDA cerebellum and dorsal root ganglia, although there was a mild decrease in aconitase activity in the latter. Mitochondrial DNA levels were reduced in FRDA heart and skeletal muscle, although in skeletal muscle this was paralleled by a decline in citrate synthase activity. Increased iron deposition was seen in FRDA heart, liver and spleen in a pattern consistent with a mitochondrial location. The iron accumulation, mitochondrial respiratory chain and aconitase dysfunction and mitochondrial DNA depletion in FRDA heart samples largely paralleled those in the yeast YFH1 knockout model, suggesting that frataxin may be involved in mitochondrial iron regulation or iron sulphur centre synthesis. However, the severe deficiency in aconitase activity also suggests that oxidant stress may induce a self-amplifying cycle of oxidative damage and mitochondrial dysfunction, which may contribute to cellular toxicity.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app