Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Expression and regulation of estrogen receptor beta in human breast tumors and cell lines.

Oncology Reports 2000 January
Expression of estrogen receptor beta (ER-beta) and its regulation by estradiol and anti-estrogens was analyzed in breast cancer cells. We determined that ER-beta is expressed in normal and tumor human breast tissue as well as in breast cancer cell lines. We observed moderate levels of ER-beta expression in both T47D and T47D-V22 (a T47D variant cell line) cells, in contrast with T47DCo (a T47D variant cell line) cells when compared to ER-alpha expression. While T47DCo (a T47D variant cell line), BT474, MDA-MB-231, MDA-MB-453, MDA-MB-468 and MCF-7 express low levels of ER-beta, other cell lines including the T47D-Y (a T47D variant cell line), MDA-MB-435, BT-549, and SKBr-3 cells express undetectable levels of ER-beta. Interestingly, ER-beta and ER-alpha are apparently not co-expressed in the breast tissue analyzed. Estradiol induced 30-40-fold increased ER-beta mRNA expression in T47D cells over control untreated cells. Moreover, the anti-estrogen, 4-hydroxy-tamoxifen (4OH-Tam) strongly inhibited estradiol induction of ER-beta expression, but had little or no effect on estradiol induction of ER-alpha. A pure anti-estrogen, ICI-182,780, completely abolished the ability of estradiol to up-regulate the expression of ER. In addition, both actinomycin D and cyclohexymide inhibited estradiol induction of ER-beta mRNA, indicating that de novo mRNA and protein synthesis are probably required for this induction. In summary, this study demonstrates that ER-beta is expressed in breast cancer, and it is regulated by estradiol. Moreover, the studies demonstrate that estradiol up-regulation of ER-beta mRNA in T47D cells can be abolished by anti-estrogens. Thus, ER-beta expression may serve as a prognostic, diagnostic and/or therapeutic marker for breast cancer. To the best of our knowledge, this is the first report regarding hormonal regulation of ER-beta in human mammary cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app