IN VITRO
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Isolation and identification of 1alpha-hydroxy-24-oxovitamin D3 and 1alpha,23-dihydroxy-24-oxovitamin D3: metabolites of 1alpha,24(R)-dihydroxyvitamin D3 produced in rat kidney.

Biochemical Pharmacology 1999 December 16
1alpha,24(R)-Dihydroxyvitamin D3 [1alpha,24(R)(OH)2D3], a synthetic vitamin D3 analog, has been developed as a drug for topical use in the treatment of psoriasis. At present, the target tissue metabolism of 1alpha,24(R)(OH)2D3 is not understood completely. In our present study, we investigated the metabolism of 1alpha,24(R)(OH)2D3 in the isolated perfused rat kidney. The results indicated that 1alpha,24(R)(OH)2D3 is metabolized in rat kidney into several metabolites, of which 1alpha,24(R),25-trihydroxyvitamin D3, 1alpha,25-dihydroxy-24-oxovitamin D3, 1alpha,23(S),25-trihydroxy-24-oxovitamin D3, and 1alpha,23-dihydroxy-24,25,26,27-tetranorvitamin D3 are similar to the previously known metabolites of 1alpha,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3]. In addition to these aforementioned metabolites, we also identified two new metabolites, namely 1alpha-hydroxy-24-oxovitamin D3 and 1alpha,23-dihydroxy-24-oxovitamin D3. The two new metabolites do not possess the C-25 hydroxyl group. Thus, the metabolism of 1alpha,24(R)(OH)2D3 into both 25-hydroxylated and non-25-hydroxylated metabolites suggests that 1alpha,24(R)(OH)2D3 is metabolized in the rat kidney through two pathways. The first pathway is initiated by C-25 hydroxylation and proceeds further via the C-24 oxidation pathway. The second pathway directly proceeds via the C-24 oxidation pathway without prior hydroxylation at the C-25 position. Furthermore, we demonstrated that rat kidney did not convert 1alpha-hydroxyvitamin D3 [1alpha(OH)D3] into 1alpha,25(OH)2D3. This finding indicates that the rat kidney does not possess the classical vitamin D3-25-hydroxylase (CYP27) activity. However, from our present study it is apparent that prior hydroxylation of 1alpha(OH)D3 at the C-24 position in the 'R' orientation allows 25-hydroxylation to occur. At present, the enzyme responsible for the C-25 hydroxylation of 1alpha,24(R)(OH)2D3 is unknown. Our observation that the side chain of 1alpha,24(R)(OH)2D3 underwent 24-ketonization and 23-hydroxylation even in the absence of the C-25 hydroxyl group suggests that 1alpha,25(OH)2D3-24-hydroxylase (CYP24) can perform some steps of the C-24 oxidation pathway without prior C-25 hydroxylation. Thus, we speculate that CYP24 may be playing a dual role in the metabolism of 1alpha,24(R)(OH)2D3.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app