In Vitro
Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Chronic intermittent ethanol exposure alters CA1 synaptic transmission in rat hippocampal slices.

We investigated the neuroadaptive changes in synaptic transmission in the CA1 region of the hippocampus as a result of chronic intermittent ethanol exposure. Male Wistar rats were exposed daily (14 h) to ethanol vapors (blood alcohol levels = 150-200 mg%) for 12-14 days, and synaptic field potentials elicited by Schaffer collateral stimulation were compared in hippocampal slices from control and chronic ethanol-treated rats. Excitatory postsynaptic responses of slices were recorded under three conditions: (i) normal physiological saline; (ii) continued presence of 33 mM (150 mg%) ethanol (chronic ethanol-treated rats only); (iii) acute exposure to 33 mM ethanol. When recorded in ethanol-free physiological saline, the mean amplitude of the dendritic synaptic potential and the somatic population spike were significantly smaller in slices from chronic ethanol-treated rats compared to slices from control rats. Under conditions of continuous ethanol exposure, somatic and dendritic synaptic responses of slices taken from chronic ethanol-treated rats were further depressed, suggesting that neural pathways in area CA1 remained sensitive to ethanol. Acute application of ethanol led to a more pronounced reduction of the mean somatic population spike amplitude in slices from chronic ethanol-treated rats than in slices from control rats. However, dendritic synaptic responses were unaffected by acute ethanol in slices from both control and chronic ethanol-treated rats. In addition, we examined the involvement of presynaptic mechanisms in the effects of chronic intermittent ethanol using paired-pulse protocols. When recorded in the continued presence of ethanol, slices from chronic ethanol-treated rats exhibited a significant reduction in paired-pulse facilitation of the dendritic synaptic response compared to slices from control rats, indicating a presynaptic component to the neuroadaptive effects of chronic intermittent ethanol exposure. Conversely, acute ethanol exposure resulted in an enhancement of paired-pulse facilitation of the dendritic synaptic response, an effect that was similar in slices from both control and chronic ethanol-treated rats. Paired-pulse facilitation of the somatic population spike amplitude was not altered by chronic ethanol treatment. However, acute ethanol exposure significantly enhanced paired-pulse facilitation of the somatic population spike in slices from chronic ethanol-treated rats. This effect of acute ethanol was not observed in slices from control rats. Paired-pulse inhibition was not significantly altered in slices from chronic ethanol-treated rats, suggesting that GABAergic inhibitory mechanisms were not involved in the neuroadaptive effects of chronic intermittent ethanol exposure. We suggest that chronic intermittent ethanol exposure can induce multiple neuroadaptive changes in synaptic transmission of CA1 pyramidal neurons that are detectable at both the pre- and postsynaptic levels. Alterations in paired-pulse facilitation indicate presynaptic changes involving the release of the excitatory neurotransmitter glutamate, whereas changes in dendritic synaptic responses suggest postsynaptic changes in the responsiveness of neurons to synaptic input. Moreover, differential effects of chronic ethanol treatment on synaptic responses recorded in the dendrites versus the somatic region implicate additional effects of ethanol on somatically located mechanisms of CA1 pyramidal neurons. Furthermore, we suggest that complete tolerance to ethanol does not occur in the CA1 region of the hippocampus following chronic intermittent ethanol exposure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app