IN VITRO
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

In situ measurement of articular cartilage deformation in intact femoropatellar joints under static loading.

The deformational behavior of articular cartilage has been investigated in confined and unconfined compression experiments and indentation tests, but to date there exist no reliable data on the in situ deformation of the cartilage during static loading. The objective of the current study was to perform a systematic study into cartilage compression of intact human femoro-patellar joints under short- and long-term static loading with MR imaging. A non-metallic pneumatic pressure device was used to apply loads of 150% body weight to six joints within the extremity coil of an MRI scanner. The cartilage was delineated during the compression experiment with previously validated 2D and 3D fat-suppressed gradient echo sequences. We observed a mean (maximal) in situ deformation of 44% (57%) in patellar cartilage after 32 h of loading (mean contact pressure 3.6 MPa), the femoral cartilage showing a smaller amount of deformation than the patella. However, only around 7% of the final deformation (3% absolute deformation) occurred during the first minute of loading. A 43% fluid loss from the interstitial patellar matrix was recorded, the initial fluid flux being 0.217 +/- 0.083 microm/s, and a high inter-individual variability of the deformational behavior (coefficients of variation 11-38%). In conjunction with finite-element analyses, these data may be used to compute the load partitioning between the solid matrix and fluid phase, and to elucidate the etiologic factors relevant in mechanically induced osteoarthritis. They can also provide direct estimates of the mechanical strain to be encountered by cartilage transplants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app