A novel compound heterozygous mutation in the steroidogenic acute regulatory protein gene in a patient with congenital lipoid adrenal hyperplasia

N Katsumata, Y Kawada, Y Yamamoto, M Noda, A Nimura, R Horikawa, T Tanaka
Journal of Clinical Endocrinology and Metabolism 1999, 84 (11): 3983-7
Congenital lipoid adrenal hyperplasia (CLAH) is an autosomal recessive disorder characterized by impaired synthesis of all adrenal and gonadal steroid hormones. Recently, it was reported that mutations in the steroidogenic acute regulatory protein (StAR) gene cause CLAH. In the present study, we have analyzed the StAR gene of a Japanese patient with CLAH. PCR amplification and subsequent nucleotide sequencing of the StAR gene and those of her parents revealed that the patient has a compound heterozygous mutation of this gene. In one allele, an undescribed G to C transversion in codon 217, which occurred at the last base of exon 5 and thus altered the splice donor site sequence, apparently resulted in a substitution of Arg to Thr (AGG to ACG: R217T), and in the other allele, a C to T transition in codon 218 caused a substitution of Ala to Val (GCG to GTG: A218V), which has been previously shown to abolish StAR activity. In vitro expression analysis of an allelic minigene that consists of exons 4-6 of the R217T mutant StAR gene showed that the G to C transversion in the splice donor site of exon 5 caused by the R217T mutation disrupts normal splicing, resulting in the complete skipping of exon 5, which alters the translation reading frame of exon 6, introduces a stop codon at amino acid position 174, and thus impairs the activity. A functional expression study of the R217T replacement mutant revealed that the mutant has no steroidogenesis-enhancing activity if the transcript of the R217T mutant allele is ever spliced normally and translated into the protein. From the genetic analysis of 50 healthy subjects, the novel R217T mutation was unlikely to be due to polymorphism. Together, these results indicate that this patient is a compound heterozygote for the mutation in the StAR gene (T217R and A218V) and that these mutations inactivate the StAR function and give rise to clinically manifest CLAH.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"