JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

The genetic basis of migraine: how much do we know?

Migraine with and without aura is thought to be genetically complex with aggregation in families due to a combination of environmental and genetic tendencies. Twin studies are most important in establishing the multifactorial nature of migraine with heritability approaching 50%. Familial hemiplegic migraine (FHM) on the other hand is an autosomal dominant, highly penetrant, though rare form of migraine with strong genetic tendency. Fifty percent of families with FHM are linked to chromosome 19p13 and mutations demonstrated for some in a brain expressed calcium channel alpha 1A subunit, CACNL1A4. Other FHM loci have been identified on chromosome 1q and further genetic heterogeneity is likely. The exact role of the mutated calcium channel in the pathway leading to hemiplegic migraine is yet to be established. Changes in the electrophysiologic properties of the mutated forms of the CACNL1A4 calcium channel expressed in heterologous systems help establish the functional significance of the mutations and suggest that chromosome 19p-linked FHM, an episodic disorder, represents a CNS channelopathy. Additional candidate genes causative for migraine might include other calcium channel subunits and related proteins important for neuronal membrane stability. Delineating the cascade of biochemical events leading to hemiplegic migraine will serve as a model for understanding the pathophysiology of more common forms of migraine. The evidence suggesting that some families of migraine with and without aura might also be related to the chromosome 19p locus, chromosome Xq28 locus, or DRD2 receptor polymorphisms is reviewed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app