Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Kinetics of PCr to ATP and beta-ATP to beta-ADP phosphoryl conversion are modified in working rat skeletal muscle after training.

Magma 1999 October
Kinetics of phosphoryl transfers from PCr to gamma-ATP and from beta-ATP to beta-ADP were measured by magnetization transfer in an in vivo 31P NMR experiment in working rat skeletal hind leg muscles. Two groups were examined. One group was submitted to a 6-week training program of treadmill running. The other group was composed of sedentary animals. Metabolic oxidative capacity and mechanical performance were improved greatly by training as shown previously. Phosphoryl transfer of PCr-->gamma-ATP or beta-ATP-->beta-ADP total fluxes were identical in resting trained and untrained muscles. Under stimulation, the flux of creatine kinase transfer was significantly inhibited by 23% compared with resting level in untrained muscles; by contrast, it was not inhibited and maintained at the high resting level in trained muscles. Thus physiological changes probably linked to a decrease of the production of anions, which could inhibit creatine kinase, were able to maintain creatine kinase flux. The flux of beta-ATP to beta-ADP transfer were enhanced largely in working muscles from 1.4+/-0.8 and 2+/-0.8 at rest to 4+/-1.6 and 6.6+/-2.7 mM s(-1) for untrained and trained muscles respectively; the effect was more pronounced in trained than in untrained muscles. These results showed an acceleration of phosphoryl turnover in working muscles after training, which could contribute to improve oxidative and mechanical performances. Such kinetic measurements of phosphoryl conversion may provide information on ATP turnover in pathophysiologic situations where ADP accumulates because of impaired ATP synthesis (mitochondrial myopathies, lower perfusion level).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app