Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Peroxisome degradation in Saccharomyces cerevisiae is dependent on machinery of macroautophagy and the Cvt pathway.

Organelle biogenesis and turnover are necessary to maintain biochemical processes that are appropriate to the needs of the eukaryotic cell. Specific degradation of organelles in response to changing environmental cues is one aspect of achieving proper metabolic function. For example, the yeast Saccharomyces cerevisiae adjusts the level of peroxisomes in response to differing nutritional sources. When cells are grown on oleic acid as the sole carbon source, peroxisome biogenesis is induced. Conversely, a subsequent shift to glucose-rich or nitrogen-limiting conditions results in peroxisome degradation. The degradation process, pexophagy, requires the activity of vacuolar hydrolases. In addition, peroxisome degradation is specific. Analyses of cellular marker proteins indicate that peroxisome degradation under these conditions occurs more rapidly and to a greater extent than mitochondrial, Golgi, or cytosolic protein delivery to the vacuole by the non-selective autophagy pathway. To elucidate the molecular mechanism of selective peroxisome degradation, we examined pexophagy in mutants that are defective in autophagy (apg) and the selective targeting of aminopeptidase I to the vacuole by the cytoplasm to vacuole targeting (Cvt) pathway. Inhibition of peroxisome degradation in cvt and apg mutants indicates that these pathways overlap and that peroxisomes are delivered to the vacuole by a mechanism that utilizes protein components of the Cvt/autophagy pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app