Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Tamoxifen-induced apoptosis in breast cancer cells relates to down-regulation of bcl-2, but not bax and bcl-X(L), without alteration of p53 protein levels.

Tamoxifen (TAM) has been shown to induce apoptosis in breast cancer cells. bcl-2 family genes, which can interact with each other, have been shown to interfere with apoptosis after various stimuli. In this study, we investigated the effects of TAM on bcl-2 family gene products bcl-2, bax, and bcl-X(L) and on p53 levels in estrogen receptor-positive MCF-7 breast cancer cells. We found that TAM induced time- and concentration-dependent down-regulation of bcl-2 at both the mRNA and protein level. Down-regulation of bcl-2 correlated with TAM-induced apoptosis. In addition, estradiol treatment significantly increased bcl-2 protein expression and blocked the reduction of bcl-2 by TAM. TAM did not, however, affect bax, bcl-X(L), or p53 expression at the mRNA or protein level. Our results demonstrate that TAM can induce apoptosis in a time- and dose-dependent manner by modulating bcl-2 levels in breast cancer cells, and down-regulation of bcl-2 induced by TAM was not accompanied by alterations in p53 levels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app