Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors

M Prewett, J Huber, Y Li, A Santiago, W O'Connor, K King, J Overholser, A Hooper, B Pytowski, L Witte, P Bohlen, D J Hicklin
Cancer Research 1999 October 15, 59 (20): 5209-18
Tumor angiogenesis is mediated by tumor-secreted angiogenic growth factors that interact with their surface receptors expressed on endothelial cells. Vascular endothelial growth factor (VEGF) and its receptor [fetal liver kinase 1 (Flk-1)/kinase insert domain-containing receptor] play an important role in vascular permeability and tumor angiogenesis. Previously, we reported on the development of anti-Flk-1 and antikinase insert domain-containing receptor monoclonal antibodies (mAbs) that potently inhibit VEGF binding and receptor signaling. Here, we report the effect of anti-Flk-1 mAb (DC101) on angiogenesis and tumor growth. Angiogenesis in vivo was examined using a growth factor supplemented (basic fibroblast growth factor + VEGF) Matrigel plug and an alginate-encapsulated tumor cell (Lewis lung) assay in C57BL/6 mice. Systemic administration of DC101 every 3 days markedly reduced neovascularization of Matrigel plugs and tumor-containing alginate beads in a dose-dependent fashion. Histological analysis of Matrigel plugs showed reduced numbers of endothelial cells and vessel structures. Several mouse tumors and human tumor xenografts in athymic mice were used to examine the effect of anti-Flk-1 mAb treatment on tumor angiogenesis and growth. Anti-Flk-1 mAb treatment significantly suppressed the growth of primary murine Lewis lung, 4T1 mammary, and B16 melanoma tumors and growth of Lewis lung metastases. DC101 also completely inhibited the growth of established epidermoid, glioblastoma, pancreatic, and renal human tumor xenografts. Histological examination of anti-Flk-1 mAb-treated tumors showed evidence of decreased microvessel density, tumor cell apoptosis, decreased tumor cell proliferation, and extensive tumor necrosis. These findings support the conclusion that anti-Flk-1 mAb treatment inhibits tumor growth by suppression of tumor-induced neovascularization and demonstrate the potential for therapeutic application of anti-VEGF receptor antibody in the treatment of angiogenesis-dependent tumors.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"