Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

NMR characterization of lignins in Arabidopsis altered in the activity of ferulate 5-hydroxylase.

Nuclear magnetic resonance (NMR) of isolated lignins from an Arabidopsis mutant deficient in ferulate 5-hydroxylase (F5H) and transgenic plants derived from the mutant by overexpressing the F5H gene has provided detailed insight into the compositional and structural differences between these lignins. Wild-type Arabidopsis has a guaiacyl-rich, syringyl-guaiacyl lignin typical of other dicots, with prominent beta-aryl ether (beta-O-4), phenylcoumaran (beta-5), resinol (beta-beta), biphenyl/dibenzodioxocin (5-5), and cinnamyl alcohol end-group structures. The lignin isolated from the F5H-deficient fah1-2 mutant contained only traces of syringyl units and consequently enhanced phenylcoumaran and dibenzodioxocin levels. In fah1-2 transgenics in which the F5H gene was overexpressed under the control of the cauliflower mosaic virus 35S promoter, a guaiacyl-rich, syringyl/guaiacyl lignin similar to the wild type was produced. In contrast, the isolated lignin from the fah1-2 transgenics in which F5H expression was driven by the cinnamate 4-hydroxylase promoter was almost entirely syringyl in nature. This simple lignin contained predominantly beta-aryl ether units, mainly with erythro-stereochemistry, with some resinol structures. No phenylcoumaran or dibenzodioxocin structures (which require guaiacyl units) were detectable. The overexpression of syringyl units in this transgenic resulted in a lignin with a higher syringyl content than that in any other plant we have seen reported.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app