Add like
Add dislike
Add to saved papers

The evaluation of fine-particle hydroxypropylcellulose as a roller compaction binder in pharmaceutical applications.

In solid dosage manufacturing, roller compaction technology plays an important role in providing cost control and a quality product. The objective of this study was to evaluate the effectiveness of fine-particle hydroxypropylcellulose (HPC) as a dry binder in roller compaction processing. The formula included acetaminophen (APAP), microcrystalline cellulose, fine-particle HPC, croscarmellose sodium, and magnesium stearate. The fine-particle HPC was incorporated into the formula at 4%, 6%, and 8% w/w levels. Three compaction pressures (30, 40, and 50 bars) were used for each formulation. The roller compaction equipment used in this study had a processing capacity of 40 to 80 kg/hr. A tablet compression profile was generated on a rotary tablet press, and compression forces used were 5, 10, 15, 20, and 25 kN. The significant criteria for tablet evaluation were capping, hardness, friability, ejection force, and drug dissolution. As the binder concentration of HPC increased, tablet capping decreased, and tablet friability improved. As the concentration of HPC increased, only slight differences were noted in tablet hardness. All the formulations pass the USP requirement of 80% APAP dissolved within 30 min. Using 8% HPC could eliminate the formula capping problem. The friability results were less than 1% at all compression forces. The minimum tablet ejection forces were found in the formulations prepared under 40 bars compaction pressure. The utility of fine-particle HPC as a roller compaction binder was established. The applicable binder concentrations and roller compaction pressures were found. Using HPC at these binder levels and operating parameters could overcome capping and friability problems and achieve the optimal tablet dosage forms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app