COMPARATIVE STUDY
IN VITRO
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Different effects of verapamil and low calcium on repetitive contractile activity of frog fatigue-resistant and easily-fatigued muscle fibres.

The effects of low calcium and verapamil on contractility of two muscle fibre types (m. iliofibularis, Rana temporaria) upon different stimulation protocols were been compared. Verapamil (0.02 mmol/l) induced temporal excitation-contraction coupling failure during single tetanic stimulation and enhanced the decline of tetanic force during 30 s repetitive tetanic stimulation in both fatigue-resistant fibres and easily-fatigued fibres. In contrast to verapamil, low extracellular calcium (0.02 mmol/l) only enhanced the decline of tetanic force in fatigue-resistant during repetitive tetanic stimulation but had no effect on easily-fatigued fibres. The effect of verapamil on the decline of tetanic force in fatigue-resistant fibres was more profound in low calcium conditions. Both verapamil and low calcium eliminated twitch facilitation that appeared after prolonged contractile activity in fatigue-resistant fibres. 4mmol/l Ni+2, used as calcium channel antagonist, had effects similar to low calcium medium. It could be concluded that (i) extracellular Ca2+-requirements for excitation-contraction coupling are different in fatigue-resistant and easily-fatigued fibres; (ii) the effects of verapamil on force performance are not entirely dependent upon calcium channel blockade.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app