Clinical predictors and outcomes for patients requiring tracheostomy in the intensive care unit

M H Kollef, T S Ahrens, W Shannon
Critical Care Medicine 1999, 27 (9): 1714-20

OBJECTIVE: To identify clinical predictors for tracheostomy among patients requiring mechanical ventilation in the intensive care unit (ICU) setting and to describe the outcomes of patients receiving a tracheostomy.

DESIGN: Prospective cohort study.

SETTING: Intensive care units of Barnes-Jewish Hospital, an urban teaching hospital.

PATIENTS: 521 patients requiring mechanical ventilation in an ICU for >12 hours.

INTERVENTIONS: Prospective patient surveillance and data collection.

MEASUREMENTS AND MAIN RESULTS: The main variables studied were hospital mortality, duration of mechanical ventilation, length of stay in the ICU and the hospital, and acquired organ-system derangements. Fifty-one (9.8%) patients received a tracheostomy. The hospital mortality of patients with a tracheostomy was statistically less than the hospital mortality of patients not receiving a tracheostomy (13.7% vs. 26.4%; p = .048), despite having a similar severity of illness at the time of admission to the ICU (Acute Physiology and Chronic Health Evaluation [APACHE] II scores, 19.2 +/- 6.1 vs. 17.8 +/- 7.2; p = .173). Patients receiving a tracheostomy had significantly longer durations of mechanical ventilation (19.5 +/- 15.7 days vs. 4.1 +/- 5.3 days; p < .001) and hospitalization (30.9 +/- 18.1 days vs. 12.8 +/- 10.1 days; p < .001) compared with patients not receiving a tracheostomy. Similarly, the average duration of intensive care was significantly longer among the hospital nonsurvivors receiving a tracheostomy (n = 7) compared with the hospital nonsurvivors without a tracheostomy (n = 124; 30.9 +/- 16.3 days vs. 7.9 +/- 7.3 days; p < .001). Multiple logistic regression analysis demonstrated that the development of nosocomial pneumonia (adjusted odds ratio [AOR], 4.72; 95% confidence interval [CI], 3.24-6.87; p < .001), the administration of aerosol treatments (AOR, 3.00; 95% CI, 2.184.13; p < .001), having a witnessed aspiration event (AOR, 3.79; 95% CI, 2.30-6.24; p = .008), and requiring reintubation (AOR, 2.21; 95% CI, 1.54-3.18; p = .028) were variables independently associated with patients undergoing tracheostomy and receiving prolonged ventilatory support. Among the 44 survivors receiving a tracheostomy in the ICU, 38 (86.4%) were alive 30 days after hospital discharge and 31 (70.5%) were living at home.

CONCLUSIONS: Despite having longer lengths of stay in the ICU and hospital, patients with respiratory failure who received a tracheostomy had favorable outcomes compared with patients who did not receive a tracheostomy. These data suggest that physicians are capable of selecting critically ill patients who most likely will benefit from placement of a tracheostomy. Additionally, specific clinical variables were identified as risk factors for prolonged ventilatory assistance and the need for tracheostomy.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"