JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Surface height effects on postural control: a hypothesis for a stiffness strategy for stance.

One possible factor influencing the control of upright stance is the perceived threat to one's personal safety, i.e. balance confidence. We explored this factor by examining the control of stationary stance when standing on an elevated platform under various conditions of reduced visual and vestibular inputs. Twenty-eight adults (14 male and 14 female, mean age = 23.5 years) participated in the experiment. Postural control was examined by recording the amplitude variability (RMS) and mean power frequency (MPF) of center of pressure excursions (COP) over a 2-minute interval while participants stood in a normal stance on a low (0.19 m) and a high (0.81 m) platform with toes positioned either at or away from the edge of the platform. Vision was manipulated through eyes open and eyes closed trials. Vestibular input was reduced by tilting the head into extension [1]. Anterior-posterior RMS and MPF of COP were significantly influenced by an interaction between surface height and vision. When vision was available, a significant decrease in RMS was observed during quiet standing on a high surface compared to a low surface independent of step restriction. When vision was available MPF increased when subjects were raised from a low to a high surface. The mean position of the COP was significantly influenced by an interaction between height and step restriction. Differences in RMS and MPF responses to height manipulation were observed between genders in eyes closed conditions. Vestibular input influenced postural control at both low and high levels with significant increases in RMS when vestibular input was reduced. The reciprocal changes observed in RMS and MPF suggest modifications to postural control through changes in ankle stiffness. Vision appears to play a role in increasing ankle stiffness when balance confidence is compromised.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app