Add like
Add dislike
Add to saved papers

Expression of transforming growth factor beta 1, 2, and 3 proteins in keloids.

Keloids represent a pathological response to cutaneous injury, creating disfiguring scars with no known satisfactory treatment. They are characterized by an excessive accumulation of extracellular matrix, especially collagen. Transforming growth factor beta (TGF-beta) has been implicated in the pathogenesis of keloids. The three TGF-beta isoforms identified in mammals (TGF-beta1, -beta2, and -beta3), are thought to have different biological activities in wound healing. TGF-beta1 and TGF-beta2 are believed to promote fibrosis and scar formation, whereas TGF-beta3 has been shown to be either scar inducing or reducing, depending on the study. The aim of this study was to characterize expression of TGF-beta isoforms in keloids at the protein level using Western blot analysis. The authors found that TGF-beta1 and -beta2 proteins were at higher levels in keloid fibroblast cultures compared with normal human dermal fibroblast cultures. In contrast, the expression of TGF-beta3 protein was comparable in both the normal (N = 3) and keloid (N = 3) cell lines. These findings, demonstrating increased TGF-beta1 and -beta2 protein expression in keloids relative to normal human dermal fibroblasts further support the roles of TGF-beta1 and -beta2 as fibrosis-inducing cytokines.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app