We have located links that may give you full text access.
Journal Article
Review
Intracellular localization of the Menkes and Wilson's disease proteins and their role in intracellular copper transport.
Copper is a heavy metal ion essential for the activity of a variety of enzymes in the body. In excess, copper is a very toxic ion and therefore efficient regulation of its metabolism is required. This is dramatically illustrated by the genetic disorders X-linked Menkes disease and autosomal recessive Wilson's disease. In 1993, both the Menkes and Wilson's genes were isolated and it was found that these genes encode homologous cation copper transporting P-type ATPase proteins. The Menkes protein (ATP7A) is expressed in most tissues, except liver. In contrast, the Wilson's protein (ATP7B) is abundantly expressed in liver. Intracellular localization of those proteins was investigated. Both ATP7A and ATP7B are localized in the trans-Golgi network and post-Golgi vesicular compartment (PGVC) in the cell. This intracellular localization was altered by the copper content present in the cell. This result may support the hypothesis that ATP7A and ATP7B are involved in cellular copper transport and those proteins could be suitable models for elucidating intracellular copper metabolism.
Full text links
Related Resources
Trending Papers
Mineralocorticoid Receptor Antagonists in Heart Failure: An Update.Circulation. Heart Failure 2024 November 25
Hemodialysis Vascular Access: Core Curriculum 2025.American Journal of Kidney Diseases 2024 December 2
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app